Solve y^1=(2x+2y+3)/(2x+2y-1)
"y'=\\frac{2x+2y+3}{2x+2y-1}\\\\\ny'=\\frac{(2x+2y-1)+4}{2x+2y-1}\\\\\ny'=\\frac{2x+2y-1}{2x+2y-1}+\\frac{4}{2x+2y-1}\\\\\ny'=1+\\frac{4}{2x+2y-1}\\\\\nu(x)=2x+2y-1\\\\\ny=\\frac{1}{2}(u-2x+1)\\\\\ny'=\\frac{1}{2}(u'-2)\\\\\n\\frac{1}{2}(u'-2)=1+\\frac{4}{u}\\\\\n\\frac{1}{2}u'=\\frac{2u+4}{u}\\\\\n\\frac{udu}{u+2}=4dx\\\\\n\\int{\\frac{udu}{u+2}}=\\int4dx\\\\\n\\int\\frac{u+2-2}{u+2}du=\\int4dx\\\\\n\\int(1-\\frac{2}{u+2})du=4x+C\\\\\nu-2ln|u+2|=4x+C\\\\\n2x+2y-1-ln(2x+2y+1)^2=4x+C\\\\\n-2x+2y-1-ln(2x+2y+1)^2=C"
Comments
Leave a comment