Solve the differential equation
dy/dx=x/16y
.
a) Find the implicit solution
b) Find the equation of the solution through the point (x,y)=(4,1) Your equation must describe a single curve of y=f(x) with the domain of f as large as possible.
c) Find the equation of the solution through the point (x,y)=(0,−2) Your answer should be of the form y=f(x)
a)..
"\\text{To solve the separable equation } \\frac{d y(x)}{d x}=\\frac{1}{16} x y(x) :\\\\\n\\text{Divide both sides by } \\frac{y(x)}{16} :\\\\"
"\\frac{16 \\frac{d y(x)}{d x}}{y(x)}=x\\\\[2mm]""\\text{Integrate both sides with respect to }x :"
"\\text{Evaluate the integrals:}\\\\\n16 \\log (y(x))=\\frac{x^{2}}{2}+c_{1}, \\text{ where } c_{1} \\text{ is an arbitrary constant.}"
"\\text{Solve for } y(x):"
"\\text{Simplifying the arbitrary constants, we have the implicit function to be:}\\\\\n\ny(x)=e^{1 \/ 32\\left(x^{2}+c_{1}\\right)}"
b).
"\\text{Solve for }c_{1} \\text{using the initial conditions:}\\\\\n\\text{Substitute } y(4)=1 \\text{ into } y(x)=e^{1 \/ 32\\left(x^{2}+c_{1}\\right)} : e^{1 \/ 32\\left(c_{1}+16\\right)}=1\\\\[4mm]\n\\text{Solving the equation:}\\\\\nc_{1}=-16\\\\[4mm]\n\n\\text{Substitute } c_{1}=-16 \\text{ into } y(x)=e^{1 \/ 32\\left(x^{2}+c_{1}\\right)} :\\\\[4mm]\n\n\\text{Answer:}\\\\\n\ny(x)=e^{1 \/ 32\\left(x^{2}-16\\right)}"
c).
"\\text{Solve for } c_{1} \\text{ using the initial conditions:}\\\\\n\\text{Substitute } y(0)=-2 \\text{ into } y(x)=e^{1 \/ 32\\left(x^{2}+c_{1}\\right)} : e^{c_{1} \/ 32}=-2\\\\[4mm]\n\\text{Solve the equation:}\\\\\n\nc_{1}=32 i \\pi+32 \\log (2)\\\\[4mm]\n\n\\text{Substitute } c_{1}=32 i \\pi+32 \\log (2) \\text{ into } y(x)=e^{1 \/ 32\\left(x^{2}+c_{1}\\right)} :\\\\[4mm]\n\n\\text{Answer:}\\\\\ny(x)=-2 e^{x^{2} \/ 32}"
Comments
Leave a comment