Solve
x ^2y'′ + 2xy'− 12y = x^3log x.
"a_0\\lambda(\\lambda-1)(\\lambda-2)...(\\lambda-n+1)+...a_{n-2}\\lambda(\\lambda-1)+a_{n-1}\\lambda+a_n=0"
x=eu
"(\\lambda-1)\\lambda+2\\lambda-12=0"
"\\lambda^2+\\lambda-12=0"
"\\lambda_1=3"
"\\lambda_2=-4"
"y''+y'-12y=ue^{3u}"
"y_0=Ce^{3u}+\\frac{C_1}{e^{4u}}"
Solution for "ue^{3u}"
a+bi=3, then s=1
"y_1=u(Au+B)e^{3u}"
"y'_1=(3Au^2+(3B+2A)u+B)e^{3u}"
"y''_1=(9Au^2+(9B+12A)u+6B+2A)e^{3u}"
"14Aue^{3u}+(7B+2A)e^{3u}=ue^{3u}"
A=1/14
B=-1/49
"y_1=(\\frac{u}{14}-\\frac{1}{49})ue^{3u}"
"y=(\\frac{u}{14}-\\frac{1}{49})ue^{3u}+Ce^{3u}+\\frac{C_1}{e^4u}"
Comments
Leave a comment