Solve y’=y-x2
, y(0)=1, by Picord’s method upto the third approximation . Hence find
the value of y(0,1), y(0,2)
"y\\left( t,0 \\right) =1\\\\y\\left( t,1 \\right) =y\\left( 0 \\right) +\\int_0^t{\\left( y\\left( s,0 \\right) -s^2 \\right) ds}=1-\\frac{t^3}{3}\\\\y\\left( t,2 \\right) =y\\left( 0 \\right) +\\int_0^t{\\left( y\\left( s,1 \\right) -s^2 \\right) ds}=1+t-\\frac{t^4}{12}-\\frac{t^3}{3}\\\\y\\left( t,3 \\right) =y\\left( 0 \\right) +\\int_0^t{\\left( y\\left( s,2 \\right) -s^2 \\right) ds}=1+t+\\frac{t^2}{2}-\\frac{t^5}{60}-\\frac{t^4}{12}\\\\y\\left( 0,1 \\right) =y\\left( 0,2 \\right) =1"
Comments
Leave a comment