prove that
||u||>0 for u<>0
"||u||=\\sqrt{(u,u)}"
For scalar u;
"(u,u)=u^2"
For vector u;
"(u,u)=u.u"
For complex u;
If "u=(u_1,u_2,...,u_n)"
"(u,u)=u_i\\bar{u_i}"
For scalar u if "u<>0" ;
Case I "u<0"
"u=-x"
"||u||=\\sqrt{(-x)(-x)}=\\sqrt{x^2}=x>0"
Case II "u>0"
"u=x"
"||u||=\\sqrt{x.x}=\\sqrt{x^2}=x>0"
So,"||u||>0"
Comments
Leave a comment