Show that the space L(R) of all bounded real sequence is a linear space over a vector field R
Let "\\overline{x}=(x_1,x_2,...),\\space \\overline{y}=(y_1,y_2,...)\\in L(R)" be two elements from the set L(R), We define their sum as "\\overline{x}+\\overline{y}=(x_1+y_1,x_2+y_2,...,x_i+y_i,..),i\\in N" or as sum for each component. We should ptove, that "\\overline x+\\overline {y}\\in L(R)" but it is easy because "\\forall i\\in N |x_i+y_i|\\le |x_i|+|y_i|\\le ||\\overline{x}||_{L(R)}+||\\overline{y}||_{L(R)}\\rarr\\\\\n||\\overline{x}+\\overline{y}||_{L(R)}\\le ||\\overline{x}||_{L(R)}+||\\overline{y}||_{L(R)}<\\infty"
Axioms of addition
"\\overline{x}+\\overline{y}=\\overline{y}+\\overline{x};\\\\\n\\overline{x}+(\\overline{y}+\\overline{z})=(\\overline{x}+\\overline{y})+\\overline{z}"
are valid because it is true in R for each component of vectors.
In linear space must be zero element and we define it by the formula
"\\overline 0=(0,0,0,..)" or vector with zeros only.
Next property takes place
"\\forall \\overline{x} \\in L(R)\\space \\overline{x}+\\overline 0=\\overline x"
because it is true for each component.
Operation of multiplication elements of L(R) by scalar from R is defined by the formula
"(c\\cdot \\overline x)_i=c\\cdot x_i,i\\in N,\\space c\\in R,\\space \\overline{x}\\in L(R)"
We have "c\\cdot \\overline x\\in L(R)" and "||c\\cdot \\overline {x}||_{L(R)}\\le |c|\\cdot ||\\overline{x}||_{L(R)}"
Operation of multiplication is defined through components , therefore next properties take place:
"c\\cdot (\\overline x+\\overline y)=c\\cdot \\overline{x}+c\\cdot \\overline{y};\\\\\nc\\cdot (d\\cdot \\overline x)=(c\\cdot d)\\cdot \\overline {x},\\space c, d\\in R"
"1\\cdot \\overline(x)=\\overline{x}"
The opposite to "\\overline{x}" element "-\\overline{x}" we define as "(-\\overline{x})_i=-x_i,i\\in N"
We have:
"(-\\overline{x})+\\overline {x}=\\overline {0},\\\\\n-\\overline{x}=(-1)\\cdot \\overline{x}"
Thus all axioms of linear space for L(R) have verified by us.
Comments
Leave a comment