Show that the space L[a,b] of all square integrable functions on the interval [a,b] is a linear space over a vector field R
A function y(x) is said to be square integrable if
"\\displaystyle{\\int^{\\infin}_{-\\infin}}|f(x)|^2dx<\\infin"
for linear space:
"(f+g)(x)=f(x)+g(x)"
"f(ax)=af(x)"
for the space L[a,b] of all square integrable functions:
if
"\\displaystyle{\\int^{\\infin}_{-\\infin}}|(f+g)(x)|^2dx<\\infin"
then
"\\displaystyle{\\int^{\\infin}_{-\\infin}}|f(x)|^2dx+\\displaystyle{\\int^{\\infin}_{-\\infin}}|g(x)|^2dx<\\infin"
"\\int f(ax)dx=a\\int f(x)dx"
so, this is a linear space over a vector field R
Comments
Leave a comment