Express the following polynomial as a linear combination of the polynomials.
P=t2+ 4t-3
P1=t2+2t+5
P2=2t2-3t
P3=t+3
Let us express the following polynomial as a linear combination of the polynomials.
"P=aP_1+bP_2+cP_3"
It follows that
"t^2+ 4t-3= a(t^2+2t+5)+b(2t^2-3t)+c(t+3)",
and hence
"t^2+ 4t-3= (a+2b)t^2+(2a-3b+c)t+(5a+3c)"
We get the following system:
"\\begin{cases} a+2b=1\\\\2a-3b+c=4\\\\5a+3c=-3\\end{cases}"
"\\begin{cases} a=1-2b\\\\2(1-2b)-3b+c=4\\\\5(1-2b)+3c=-3\\end{cases}"
"\\begin{cases} a=1-2b\\\\-7b+c=2\\\\-10b+3c=-8\\end{cases}"
"\\begin{cases} a=1-2b\\\\c=2+7b\\\\-10b+3(2+7b)=-8\\end{cases}"
"\\begin{cases} a=1-2b\\\\c=2+7b\\\\11b=-14\\end{cases}"
"\\begin{cases} a=\\frac{39}{11}\\\\c=-\\frac{76}{11}\\\\b=-\\frac{14}{11}\\end{cases}"
We conclude that
"P=\\frac{39}{11}P_1-\\frac{14}{11}P_2-\\frac{76}{11}P_3"
Comments
Leave a comment