Show that T:R^3 →R^2: T(x,y,z)= (2x+y-z,x+z) is a linear transformation. Verify that T satisfies the Rank-nullity theorem
Let "\\alpha=(x_1,y_1,z_1)\\isin R^3,\n\n\\beta=(x_2,y_2,z_2)\\isin R^3"
Then "T(\\alpha)=(2x_1+y_1-z_1,x_1+z_1)"
"T(\\beta)=(2x_2+y_2-z_2,x_2+z_2)"
"\\alpha+\\beta=(x_1+x_2,y_1+y_2,z_1+z_2)"
"T(\\alpha+\\beta)=(2(x_1+x_2)+(y_1+y_2)-(z_1+z_2),(x_1+x_2)+(z_1+z_2))"
"=((2x_1+y_1-z_1)+(2x_2+y_2-z_2),(x_1+z_1)+(x_2+z_2))"
"=T(\\alpha)+T(\\beta)"
Also let "c\\isin R."
Then
"c\\alpha=(cx_1,cy_1,cz_1)"
"T(c\\alpha)=(2cx_1+cy_1-cz_1,cx_1+cz_1)"
"=c(2x_1+y_1-z_1,x_1+z_1)"
"=cT(\\alpha)"
Thus
"T(\\alpha+\\beta)=T(\\alpha)+T(\\beta)"
for all "\\alpha,\\beta\\isin R^3"
and
"T(c\\alpha)=cT(\\alpha)" for all "c\\isin R" and "\\alpha\\isin R^3."
Hence "T" is a linear transformation.
"K""er" "T=" {"(x,y,z)\\isin R^3:T(x,y,z)=(0,0)"}
Let "(x_1,y_1,z_1)\\isin" "Ker" "T"
Then "2x_1+y_1-z_1=0,x_1+z_1=0."
From second equation we get "x_1=-z_1"
Let "x_1=k" (say) , then "z_1=-k"
Now from first equation we get , "y_1=-3k"
Therefore "(x_1,y_1,z_1)=k(1,-3,-1)=c(-1,3,1)", "c\\isin R"
Let "\\alpha=(-1,3,1)". Then "Ker" "T="linear span of "\\alpha=L"{"\\alpha" } and "dim""Ker" "T=1."
"ImT" is the linear span of the vectors "T(\\alpha_1),T(\\alpha_2),T(\\alpha_3)" where {"\\alpha_1,\\alpha_2,\\alpha_3"} is any basis of "R^3".
{"\\epsilon_1=(1,0,0),\\epsilon_2=(0,1,0),\\epsilon_3=(0,0,1)"} is a basis of "R^3".
Now "T(\\epsilon_1)=(2,1),T(\\epsilon_2)=(1,0),T(\\epsilon_3)=(-1,1)."
"ImT=L"{"(2,1),(1,0),(-1,1)" }
These vectors are linearly dependent in "R^2."
But the subset {"(2,1),(1,0)"} is linearly independent in "R^2".
"\\therefore ImT=L"{"(2,1),(1,0)" }
Therefore "dim" "ImT=2."
Now according to the Rank- Nullity theorem we know that
"dim" "KerT+" "dim" "ImT" "=dim" "R^3"
Here, "dim" "KerT+dim" "ImT=1+2=3".
"dim" "R^3=3"
Therefore "T" satisfies the Rank-Nullity theorem.
Comments
Leave a comment