If { v1, v2, v3} is a set of mutually orthogonal vector, then so is { v1+v2, v2+v2,v3+v1}
True or false with full explanation
The statement is false, {v1+v2,v2+v3,v3+v1} is not a set of mutually orthogonal vectors.
Proof
"(v_1+v_2)\\cdot(v_2+v_3)=v_1\\cdot{v_2}+v_1\\cdot{v_3}+v_2\\cdot{v_2}+v_2\\cdot{v_3}\\\\"
Since { v1, v2, v3} is a set of mutually orthogonal vectors,
"v_1\\cdot v_2=v_2\\cdot v_3=v_1\\cdot v_3=0\\\\\n(v_1+v_2)\\cdot(v_2+v_3)=v_2\\cdot v_2=\\|v_2\\|^2"
Alternatively
"(v_1+v_2)\\cdot(v_3+v_1)=\\|v_1\\|^2\\\\\n(v_2+v_3)\\cdot(v_3+v_1)=\\|v_3\\|^2\\\\"
The dot products of the set of vectors are not zero. Hence, they are not mutually orthogonal.
Comments
Leave a comment