If 2 is one of the eigenvalue of
−2 2 −3
2 1 −6
−1 −2 0
then find the other two eigenvalues.
"A=\\begin{pmatrix}\n -2&2&-3 \\\\\n 2&1&-6\\\\\n-1&-2&0\n\\end{pmatrix}"
"|A-I\\lambda|=\\begin{vmatrix}\n -2-\\lambda& 2& -3\\\\\n 2& 1-\\lambda & -6\\\\\n -1 & -2 & -\\lambda\n\\end{vmatrix}"
"=-(\\lambda-5)(\\lambda+3)^2"
Equate to zero.
"\\implies \\lambda=5, -3"
Comments
Leave a comment