what is the square root of 2-i?
The polar form of "2-i" is "\\sqrt{5}\\bigg(\\cos\\big(-\\tan^{-1}(0.5)\\big)+i\\sin\\big(-\\tan^{-1}(0.5)\\big)\\bigg)".
According to the De Moivre's Formula all square roots of complex number "2-i" are given by
"+i\\sin\\big(\\dfrac{-\\tan^{-1}(0.5)+2\\pi k}{2}\\big)\\bigg), k=0, 1"
"k=0:"
"+i\\sin\\big(\\dfrac{-\\tan^{-1}(0.5)+2\\pi (0)}{2}\\big)\\bigg)""=\\sqrt[4]{5}\\bigg(\\cos\\big(\\dfrac{\\tan^{-1}(0.5)}{2}\\big)-i\\sin\\big(\\dfrac{\\tan^{-1}(0.5)}{2}\\big)\\bigg)"
"k=1:"
"+i\\sin\\big(\\dfrac{-\\tan^{-1}(0.5)+2\\pi (1)}{2}\\big)\\bigg)""=\\sqrt[4]{5}\\bigg(-\\cos\\big(\\dfrac{\\tan^{-1}(0.5)}{2}\\big)+\\sin\\big(\\dfrac{\\tan^{-1}(0.5)}{2}\\big)\\bigg)"
Comments
Leave a comment