18. Suppose R^2 has weighted inner product given as <u, v> =(3u base 1 v base 1 + 2u base 2 V base 2 for u = (u base 1, u base 2), v = (V base 1, v base 2). Let u = (1, 2), v = ( 2, - 1) and K = 3. Then the valued of <u, kv> is.....
(i) 4
(ii) 6
(iii) 18
(iv) None
19. Suppose that u, v "\\isin" V are such that ||u|| = 2, ||u +v|| = 3 and ||u - v|| = 4. Then ||v|| is?
(i) 17/2
(ii) β17
(iii) Does not exist
(iv) None
20. For a given matrix A="\\begin{bmatrix}\n3 & 1 \\\\\n 1 & 3\n\\end{bmatrix}", the matrix P that is orthogonally diagonalizes A is of the following matrices are diagonalisable
(i)P= "\\begin{bmatrix}\n1\/\u221a2 & 1\/\u221a2 \\\\\n 1\/\u221a2 & - 1\/\u221a2\n\\end{bmatrix}"
(ii)P= "\\begin{bmatrix}\n 0 & 1 \\\\\n 1 & 0 \n\\end{bmatrix}"
(iii)P="\\begin{bmatrix}\n-1\/\u221a2 & 1\/\u221a2 \\\\\n - 1\/\u221a2 & 1\/\u221a2\n\\end{bmatrix}"
18.
"<u, v> =3u_ 1 v _ 1 + 2u _ 2 v _ 2"
"<u, kv>=3\\cdot3\\cdot2-2\\cdot2\\cdot3=18-12=6"
Answer: (ii) 6
19.
"||u \\pm v|||^2=||u||^2\\pm 2 <u, v>+||v||^2"
then:
"||u + v|||^2+||u - v|||^2=2(||u||^2+||v||^2)=9+16=25"
"||v||=\\sqrt{25\/2-4}=\\sqrt{17\/2}"
Answer: (iii) Does not exist
20.
"\\begin{vmatrix}\n 3-\\lambda & 1 \\\\\n 1 & 3-\\lambda\n\\end{vmatrix}=0"
"\\lambda^2-6\\lambda+8=0"
"\\lambda_1=2,\\lambda_2=4"
"x+y=0\\implies x=-y"
first eigenvector:
"\\begin{pmatrix}\n x_1 \\\\\n -x_1\n\\end{pmatrix}"
"-x+y=0\\implies x=y"
second eigenvector:
"\\begin{pmatrix}\n x_2 \\\\\n x_2\n\\end{pmatrix}"
"P=\\begin{pmatrix}\n x_2 &x_1\\\\\n x_2&-x_1\n\\end{pmatrix}"
Answer:
(i)P=Β "\\begin{bmatrix}\n1\/\u221a2 & 1\/\u221a2 \\\\\n 1\/\u221a2 & - 1\/\u221a2\n\\end{bmatrix}"
Comments
Leave a comment