Let T
be a function from R
3
→R
3
defined by
T(x,y,z)=(x−y+2z,2x+y,−x−2y+2z)
(i)
(ii)
Show that T is a Linear Transformation
Find nullity of T
A transformation T is linear if
1) T(ax)= aT(x)
2) T(x)=A(x) where A is a matrix.
Part 1
Ta(x,y,z)"=" T(ax,ay,az)
"=(ax-ay+2az,2ax+ay,-ax-2ay+2az)"
"=a(x-y+2z,2x+y,-x-2y+2z)"
"=aT(x,y,z)"
"T(x,y,z)=x\\begin{pmatrix}\n 1 \\\\\n 2\\\\\n-1\n\\end{pmatrix}+y\\begin{pmatrix}\n -1 \\\\\n 1 \\\\\n-2\n\\end{pmatrix}+z\\begin{pmatrix}\n 2 \\\\\n 0 \\\\\n2\n\\end{pmatrix}"
"T(x,y,z)=\\begin{pmatrix}\n 1&-1&2 \\\\\n 2&1&0 \\\\\n-1&-2&2\n\\end{pmatrix}" "\\begin{pmatrix}\n x \\\\\n y\\\\\nz\n\\end{pmatrix}"
Therefore T is linear
Part 2
"\\frac{1}{3}(R_2-2R_1\\to\\>R_2)"
"R_3+R_1\\to\\>R_3"
"\\begin{pmatrix}\n 1&-1& 2\\\\\n 1&1 & \\frac{-4}{3}\\\\\n0&-3&4\n\\end{pmatrix}"
"R_1+R_2\\to\\>R_1"
"R_3+3R_2\\to\\>R_3"
"\\begin{pmatrix}\n 1&0&\\frac{2}{3} \\\\\n 0&1&\\frac{-4}{3} \\\\\n0&0&0\n\\end{pmatrix}"
Nullity is "=1"
Comments
Leave a comment