Question. Given the matrix A = 3 1 1
2 4 2
1 1 3
a. Solve A for its eigen values and given vectors
b. Constant Similar matrix for A if possible
a.
"A-\\lambda I=\\begin{bmatrix}\n 3-\\lambda & 1 & 1 \\\\\n 2 & 4-\\lambda & 2 \\\\\n 1 & 1 & 3-\\lambda\n\\end{bmatrix}"
"\\det A-\\lambda I=\\begin{vmatrix}\n3-\\lambda & 1 & 1 \\\\\n 2 & 4-\\lambda & 2 \\\\\n 1 & 1 & 3-\\lambda\n\\end{vmatrix}"
"=(3-\\lambda)^2(4-\\lambda)+2+2-(4-\\lambda)-2(3-\\lambda)"
"-2(3-\\lambda)=36-24\\lambda+4\\lambda^2-9\\lambda+6\\lambda^2-\\lambda^3"
"+4-4+\\lambda-12+4\\lambda=-\\lambda^3+10\\lambda^2-28\\lambda+24=0"
"-\\lambda^2(\\lambda-2)+8\\lambda(\\lambda-2)-12(\\lambda-2)=0"
"-(\\lambda-2)^2(\\lambda-6)=0"
"\\lambda_1=6, \\lambda_2=2, \\lambda_3=2"
These are the eigenvalues.
b. Find the eigenvectors.
"\\lambda=6"
"R_1=R_1\/(-3)"
"R_2=R_2-2R_1"
"R_3=R_3-R_1"
"R_2=-3R_2\/4"
"R_1=R_1+R_2\/3"
"R_3=R_3-4R_2\/3"
"\\begin{bmatrix}\n 1 & 0 & -1 \\\\\n 0 & 1 & -2 \\\\\n 0 & 0 & 0\n\\end{bmatrix}\\begin{bmatrix}\n x_1 \\\\\n x_2 \\\\\n x_3\n\\end{bmatrix}=\\begin{bmatrix}\n 0 \\\\\n 0 \\\\\n 0\n\\end{bmatrix}"
If we take "x_3=t," then "x_1=t, x_2=2t."
The eigenvector is "\\begin{bmatrix}\n 1 \\\\\n 2 \\\\\n 1\n\\end{bmatrix}"
"\\lambda=2"
"R_2=R_2-2R_1"
"R_3=R_3-R_1"
If we take "x_2=t,x_3=s," then "x_1=-t-s."
The eigenvectors are "\\begin{bmatrix}\n -1 \\\\\n 1 \\\\\n 0\n\\end{bmatrix},\\begin{bmatrix}\n -1 \\\\\n 0 \\\\\n 1\n\\end{bmatrix}."
The matrices "A=\\begin{bmatrix}\n 3 & 1 & 1 \\\\\n 2 & 4 & 2 \\\\\n 1 & 1 & 3\n\\end{bmatrix}" and "D=\\begin{bmatrix}\n 6 & 0 & 0 \\\\\n 0 & 2 & 0 \\\\\n 0 & 0 & 2\n\\end{bmatrix}" are similar.
Comments
Leave a comment