Solve the following equation using inverse method
[1 3 0] [x] [4]
[0 0.5 1] [y]=[1]
[0.5 0 1] [z] [3]
Solution
Given that
"\\begin{bmatrix}\n 1 & 3 & 0\\\\\n 0 & 0.5 & 1\\\\\n 0.5 & 0&1\\\\\n\\end{bmatrix}\\times\\begin{bmatrix}\n x \\\\\n y \\\\\n z\\\\\n\\end{bmatrix}=\\begin{bmatrix}\n 4 \\\\\n 1 \\\\\n3\\\\\n\\end{bmatrix}"
This can be written as
"AX=B"
"A^{-1}AX=A^{-1}B"
"IX=A^{-1}B"
"X=A^{-1}B"
Now
"A=\\begin{bmatrix}\n 1 & 3 & 0\\\\\n 0 & 0.5 & 1\\\\\n 0.5 & 0&1\\\\\n\\end{bmatrix}"
"\\begin{gathered}\n \\Rightarrow & \\det \\left( A \\right) = 1\\left( {0.5 - 0} \\right) - 3\\left( {0 - 0.5} \\right) + 0\\left( {0 - 0.25} \\right) \\\\\n \\Rightarrow & \\det \\left( A \\right) = 0.5 + 1.5 = 2 \\\\ \n\\end{gathered} \\"
Then
"{A^{ - 1}} = \\frac{{AdjA}}{{\\det \\left( A \\right)}}\\"
"{A^{ - 1}} = \\frac{\\begin{bmatrix}\n 0.5 & -3 & 3\\\\\n 0.5 & 1 & -1\\\\\n -0.25 & 1.5&0.5\\\\\n\\end{bmatrix}}{{(2)}}\\"
"{A^{ - 1}} = \\begin{bmatrix}\n 0.25 & -1.5 & 1.5\\\\\n 0.25 & 0.5 & -0.5\\\\\n -0.125 & 0.75&0.25\\\\\n\\end{bmatrix}"
Therefore,
"X=A^{-1}B"
"X=" "\\begin{bmatrix}\n 0.25 & -1.5 & 1.5\\\\\n 0.25 & 0.5 & -0.5\\\\\n -0.125 & 0.75&0.25\\\\\n\\end{bmatrix}\\begin{bmatrix}\n x \\\\\n y \\\\\n z\\\\\n\\end{bmatrix}"
"\\begin{bmatrix}\n x \\\\\n y \\\\\n z\\\\\n\\end{bmatrix}=" "\\begin{bmatrix}\n 4\\\\\n 0\\\\\n 1\\\\\n\\end{bmatrix}"
Hence
"x=4,\\ y=0\\ z=1"
Comments
Leave a comment