For what values of α are vectors (1,1,2,1), (2,1,2,3), (1,4,2,1) (-1,3,5,α) are linearly inde-
pendent
Let "v_1=(1, 1, 2, 1),\\ \\ v_2=(2, 1, 2, 3),\\ \\ v_3=(1,4,2,1),\\ \\ v_4=(-1,3,5,\\alpha)."
These vectors are linearly independent if and only if "\\begin{vmatrix}\n1&1&2&1\\\\2&1&2&3\\\\1&4&2&1\\\\-1&3&5&\\alpha\n\\end{vmatrix}\\neq0" .
"\\begin{vmatrix}\n1&1&2&1\\\\2&1&2&3\\\\1&4&2&1\\\\-1&3&5&\\alpha\n\\end{vmatrix}=\\begin{vmatrix}1&1&2&1\\\\0&-1&-2&1\\\\0&3&0&0\\\\0&4&7&\\alpha+1\n\\end{vmatrix}=\n\\begin{vmatrix}\n1&1&2&1\\\\0&-1&-3&1\\\\0&0&-6&3\\\\0&0&-1&\\alpha+5\n\\end{vmatrix}=-\\begin{vmatrix} 1&1&2&1\\\\0&-1&-3&1\\\\0&0&-1&\\alpha+5 \\\\0&0&-6&3\n\\end{vmatrix} =-\\begin{vmatrix} 1&1&2&1\\\\0&-1&-3&1\\\\0&0&-1&\\alpha+5 \\\\0&0&0&-6\\alpha-27\n\\end{vmatrix}=-1\\cdot(-1)\\cdot(-1)\\cdot(-6\\alpha-27)=6\\alpha+27\\neq 0"
Answer: for all values "\\alpha\\neq -4.5"
Comments
Leave a comment