The following table gives the viscosity of an oil as a function of temperature. Use Lagrange’s formula to find the viscosity of oil at a temperature of 140°.
Temp° : 110 130 160 190
Viscosity: 10.8 8.1 5.5 4.8
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n x & 110 & 130 & 160 & 190 \\\\ \\hline\n y & 10.8 & 8.1 & 5.5 & 4.8 \\\\\n \n \n\\end{array}" , where "x" is temperature, "y" is viscosity.
By Lagrange’s interpolation formula we have:
"y=f(x)= \\frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0+ \\frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1+ \\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2+ \\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3"
We put "x=140" :
"y(140)=f(140)= \\frac{(140-130)(140-160)(140-190)}{(110-130)(110-160)(110-190)}10.8+ \\frac{(140-110)(140-160)(140-190)}{(130-110)(130-160)(130-190)} 8.1+ \\frac{(140-110)(140-130)(140-190)}{(160-110)(160-130)(160-190)}5.5+ \\frac{(140-110)(140-130)(140-160)}{(190-110)(190-130)(190-160)} 4.8=-\\frac{1}{8}\\cdot 10.8+\\frac{5}{6}\\cdot8.1+\\frac{1}{3}\\cdot 5.5-\\frac{1}{24}\\cdot4.8=7.033"
Answer: the viscosity of oil at a temperature of "140^\\circ" is "7.033" .
Comments
Leave a comment