Certain corresponding values of x and log10x are given below:
x: 300 304 305 307
log10 x: 2.4771 2.4829 2.4843 2.4871
Find log10 (310) by Lagrange’s formula.
Here the intervals are unequal.
By Lagrange’s interpolation formula we have
"y=f(x)=\\dfrac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}\\times y_0""+\\dfrac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}\\times y_1"
"+\\dfrac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}\\times y_2"
"+\\dfrac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}\\times y_3"
Put "x=310"
"f(310)=\\dfrac{(310-304)(310-305)(310-307)}{(300-304)(300-305)(300-307)}\\times 2.4771""+\\dfrac{(310-300)(310-305)(310-307)}{(304-300)(304-305)(304-307)}\\times 2.4829"
"+\\dfrac{(310-300)(310-304)(310-305)}{(307-300)(307-304)(307-305)}\\times 2.4871"
"=2.4914"
"\\log_{10}(310)=2.4914"
Comments
Leave a comment