Find a root of the following equations correct to three decimals using Newton's raphson method: x³ -5x +3=0
"f(x)=x^3-5x+3"
"f'(x)=3x^2-5"
"x_{n+1}=x_n-\\dfrac{f(x_n)}{f'(x_n)}"
"x_0=-2"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n step & x_0 & f(x_0) & x_1 & f(x_1) \\\\ \\hline\n 1 & -2.0000 & 5 & -2.7143 & -3.4257 \\\\\n \\hdashline\n 2 & -2.7143 & -3.4257 & -2.5140 & -0.3187 \\\\\n \\hdashline\n 3 & -2.5140 & -0.3187 & -2.4912 & -0.0039 \\\\\n \\hdashline\n 4 & -2.4912 & -0.0039 & -2.4909 & 0.0000 \\\\\n \\hdashline\n5 & -2.4909& -0.0000 & -2.4909 & 0.0000 \\\\\n \\hdashline\n\\end{array}""x_{I}=-2.491"
"x_0=1"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n step & x_0 & f(x_0) & x_1 & f(x_1) \\\\ \\hline\n 1 & 1.0000 & -1.0000 & 0.5000 & 0.6250 \\\\\n \\hdashline\n 2 & 0.5000 & 0.6250 & 0.6471 & 0.0356 \\\\\n \\hdashline\n 3 & 0.6471 & 0.0356 & 0.6566 & 0.0002\\\\\n \\hdashline\n 4 & 0.6566 & 0.0002 & 0.6566 & 0.0002 \\\\\n \\hdashline\n\n\\end{array}""x_{II}=0.657"
"x_0=2"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n step & x_0 & f(x_0) & x_1 & f(x_1) \\\\ \\hline\n 1 & 2.0000 & 1.0000 & 1.8571 & 0.1195 \\\\\n \\hdashline\n 2 & 1.8571 & 0.1195 & 1.8348 & 0.0028 \\\\\n \\hdashline\n 3 & 1.8348 & 0.0028 & 1.8342 & 0.0000\\\\\n \\hdashline\n 4 & 1.8342 & 0.0000 & 1.8342 & 0.0000 \\\\\n \\hdashline\n\n\\end{array}""x_{III}=1.834"
Comments
Leave a comment