use the power method to estimatedominant eigenvalue and the corresponding eigenvector for the matrix A =[1 2 1,0 2 5 ,1 0 -1.Start with the vector[1 1 1] and do two iterations.
"A=\\begin{pmatrix}\n 1 & 2&1 \\\\\n 0 & 2&5\\\\\n1&0&-1\n\\end{pmatrix}"
"\\begin{vmatrix}\n 1-\\lambda & 2&1 \\\\\n 0 & 2-\\lambda&5\\\\\n1&0&-1-\\lambda\n\\end{vmatrix}=(1-\\lambda)(2-\\lambda)(-1-\\lambda)+10-2+\\lambda="
"=(2-3\\lambda+\\lambda^2)(-1-\\lambda)+\\lambda+8=-\\lambda^3+2\\lambda^2+\\lambda-2+\\lambda+8="
"=-\\lambda^3+2\\lambda^2+2\\lambda+6=0"
"\\lambda_1=3.207"
"x_1=Ax_0=\\begin{pmatrix}\n 1 & 2&1 \\\\\n 0 & 2&5\\\\\n1&0&-1\n\\end{pmatrix}\\begin{pmatrix}\n 1 \\\\\n 1\\\\\n1\n\\end{pmatrix}=\\begin{pmatrix}\n 4 \\\\\n 7 \\\\\n0\n\\end{pmatrix}"
"x_1=x_1\/||x_1||=\\begin{pmatrix}\n 0.4961 \\\\\n 0.8682 \\\\\n0\n\\end{pmatrix}"
"x_2=Ax_1=\\begin{pmatrix}\n 1 & 2&1 \\\\\n 0 & 2&5\\\\\n1&0&-1\n\\end{pmatrix}\\begin{pmatrix}\n 0.4961 \\\\\n 0.8682 \\\\\n0\n\\end{pmatrix}=\\begin{pmatrix}\n 2.2325 \\\\\n 1.7364 \\\\\n0.4961\n\\end{pmatrix}"
"x_2=x_2\/||x_2||=\\begin{pmatrix}\n 0.7775 \\\\\n 0.6047 \\\\\n0.1728\n\\end{pmatrix}"
"Ax_2=\\begin{pmatrix}\n 1 & 2&1 \\\\\n 0 & 2&5\\\\\n1&0&-1\n\\end{pmatrix}\\begin{pmatrix}\n 0.7775 \\\\\n 0.6047 \\\\\n0.1728\n\\end{pmatrix}=\\begin{pmatrix}\n 2.1597 \\\\\n 2.0734 \\\\\n0.6047\n\\end{pmatrix}"
Approximation to the dominant eigenvalue "\\lambda_1=3.207" :
"\\lambda_1=\\frac{(Ax_2)\\cdot x_2}{x_2\\cdot x_2}=\\frac{3.0374}{1.0019}=3.032"
Find corresponding eigenvector:
"\\begin{cases}\n (1-\\lambda)x+2y+z=0\\\\\n (2-\\lambda)y+5z=0\\\\\nx- (1+\\lambda)z=0\n\\end{cases}"
"\\begin{cases}\n -2.032x+2y+z=0\\\\\n -1.032y+5z=0\\\\\nx-4.032z=0\n\\end{cases}"
"10.16x-11.032y=0"
"2y-7.193z=0"
"x=1.086y"
"y=3.6z"
"v_1=\\begin{pmatrix}\n 1 \\\\\n 0.9 \\\\\n0.25\n\\end{pmatrix}"
Comments
Leave a comment