If dy/dx = y − x, y(0) = 1 2 . Use Modified Euler’s method with h = 0.1 to obtain an approximation to y(0.2).
Given "y^{\\prime}=y-x, y(0)=0.5, h=0.1, y(0.2)=?"
Here, "x_{0}=0, y_{0}=0.5, h=0.1, x_{n}=0.2"
"\\begin{aligned}\n\n&y^{\\prime}=y-x \\\\\n\n&\\therefore f(x, y)=y-x\n\n\\end{aligned}"
Modified Euler method
"y_{m+1}=y_{m}+h f\\left(x_{m}+\\frac{1}{2} h, y_{m}+\\frac{1}{2} h f\\left(x_{m}, y_{m}\\right)\\right)\n\n\n\n\\\\x_{0}+\\frac{1}{2} h=0+\\frac{0.1}{2}=0.05\n\n\n\n\\\\y_{0}+\\frac{1}{2} h f\\left(x_{0}, y_{0}\\right)=0.5+\\frac{0.1}{2} \\cdot 0.5=0.525\n\n\n\n\\\\f\\left(x_{0}+\\frac{1}{2} h, y_{0}+\\frac{1}{2} h f\\left(x_{0}, y_{0}\\right)=f(0.05,0.525)=0.475\\right."
"\\begin{aligned}\n\n&y_{1}=y_{0}+h f\\left(x_{0}+\\frac{1}{2} h, y_{0}+\\frac{1}{2} h f\\left(x_{0}, y_{0}\\right)\\right)=0.5+0.1 \\cdot 0.475=0.5475 \\\\\n\n&\\therefore y(0.1)=0.5475\n\n\\end{aligned}"
Again taking "\\left(x_{1}, y_{1}\\right)" in place of "\\left(x_{0}, y_{0}\\right)" and repeat the process
"\\begin{aligned}\n\n&f\\left(x_{1}, y_{1}\\right)=f(0.1,0.5475)=0.4475 \\\\\n\n&x_{1}+\\frac{1}{2} h=0.1+\\frac{0.1}{2}=0.15 \\\\\n\n&y_{1}+\\frac{1}{2} h f\\left(x_{1}, y_{1}\\right)=0.5475+\\frac{0.1}{2} \\cdot 0.4475=0.5699 \\\\\n\n&f\\left(x_{1}+\\frac{1}{2} h, y_{1}+\\frac{1}{2} h f\\left(x_{1}, y_{1}\\right)=f(0.15,0.5699)=0.4199\\right. \\\\\n\n&y_{2}=y_{1}+h f\\left(x_{1}+\\frac{1}{2} h, y_{1}+\\frac{1}{2} h f\\left(x_{1}, y_{1}\\right)\\right)=0.5475+0.1 \\cdot 0.4199=0.5895 \\\\\n\n&\\therefore y(0.2)=0.5895\n\n\\end{aligned}"
Comments
Leave a comment