for (x,y)"\\neq"(0,0),
f(x,y) = "\\frac{x^2 y^3}{x^4+y^2}"
the directional derivative of f at A=(a,b) in the direction of U=(u1,u2) is
D = "\\lim_{t \\to o} \\frac{f(A+tU)-f(A)}{t} = \\lim_{t \\to o} \\frac{f(tu_1 , tu_2)-f(0,0)}{t}"
"\\lim_{t \\to o} \\frac{t^5 u_1^2 u_2^3}{t^3 (t^2 u_1 ^4+ u_2 ^2)}"
"\\lim_{t \\to o} \\frac{t^2 u_1 ^2 u_2 ^3}{t^2 u_1 ^4+ u_2 ^2}" = 0
Comments
Leave a comment