"\\int\\limits_{-5}^5f(x)dx=\\int\\limits_{-5}^5x^2dx+5\\int\\limits_{-5}^5[x]dx". The integral "\\int\\limits_{-5}^5x^2dx" exists. Show that integral "\\int\\limits_{-5}^5[x]dx" also exists.
"\\int\\limits_{-5}^5[x]dx=\\sum\\limits_{k=-5}^4\\int\\limits_k^{k+1}[x]dx=\\sum\\limits_{k=-5}^4\\int\\limits_k^{k+1}kdx" , so integral "\\int\\limits_{-5}^5[x]dx" exists.
"f" is not differentiable in "[-4,5]\\cap\\mathbb Z", because left derivative of "f" in this set do not exist .
Indeed, let "k\\in[-4,5]\\cap\\mathbb Z" , so left derivative in point "k" is"\\lim\\limits_{x\\to 0+}\\frac{f(k)-f(k-x)}{x}=\\lim\\limits_{x\\to 0+}\\frac{5[k]+k^2-5[k-x]-(k-x)^2}{x}="
"=\\lim\\limits_{x\\to 0+}\\frac{5k+k^2-5[k-x]-k^2+2kx-x^2}{x}=\\lim\\limits_{x\\to 0+}\\frac{5k-5[k-x]+2kx-x^2}{x}="
"=2k+5\\lim\\limits_{x\\to 0+}\\frac{k-[k-x]}{x}"
If "x\\in (0,1)" , then "[k-x]=k-1" , so "\\lim\\limits_{x\\to 0+}\\frac{k-[k-x]}{x}=\\lim\\limits_{x\\to 0+}\\frac{k-(k-1)}{x}=+\\infty"
So we obtain that left derivatives of "f" in "[-4,5]\\cap\\mathbb Z" equal "+\\infty" , that is, do not exist.
Answer: "f" is integrable, but not differentiable.
Comments
Leave a comment