"\\mathbf{We \\;have-\\;\\;u=3t^2\\;i+e^t\\;j-t\\;k\\;\\;and\\;v=sin(t)\\;i-cos(t)\\;j+e^{2t}\\;k}"
"\\mathbf{To\\;find- \\;at\\;t=0\\;,\\;\\dfrac{d}{dt}(u \\times v)= \\;?}"
"\\mathbf{So,\\;u \\times v= \\begin{vmatrix}\n i & j & k\\\\\n 3t^2 & e^t &-t\\\\\n\\sin(t) & \\cos(t) & e^{2t}\n\\end{vmatrix}=i\\;\\begin{vmatrix}\n e^t & -t \\\\\n \\cos(t) & e^{2t}\n\\end{vmatrix}-j\\;\\begin{vmatrix}\n 3t^2 & -t \\\\\n \\sin(t) & e^{2t}\n\\end{vmatrix}}"
"\\mathbf{+k\\;\\begin{vmatrix}\n 3t^2 & e^t \\\\\n \\sin(t) & \\cos(t)\n\\end{vmatrix}}"
"\\mathbf{\\implies u \\times v=i\\;(e^t.e^{2t}-(-t).\\cos(t))-j(3t^2.e^{2t}-(-t).\\sin(t))}"
"\\mathbf{+k\\;(3t^2.\\cos(t)-e^t.\\sin(t))}"
"\\mathbf{=i\\;(e^{3t}+t\\cos(t))-j(3t^2e^{2t}+t\\sin(t))+k(3t^2\\cos(t)-e^t\\sin(t))}"
"\\mathbf{Now,\\;\\dfrac{d}{dt}(u \\times v)=\\dfrac{d}{dt}\\bigg[i\\;(e^{3t}+t\\cos(t))-j(3t^2e^{2t}+t\\sin(t))}"
"\\mathbf{+k(3t^2\\cos(t)-e^t\\sin(t))\\bigg]}"
"\\mathbf{=i\\;\\bigg(\\dfrac{d}{dt}(e^{3t}+t\\cos(t))\\bigg)-j\\;\\bigg(\\dfrac{d}{dt}(3t^2e^{2t}+t\\sin(t))\\bigg)}"
"\\mathbf{+k\\;\\bigg(\\dfrac{d}{dt}(3t^2\\cos(t)-e^t\\sin(t))\\bigg)}"
"=" "\\mathbf{i\\;(3e^{3t}+\\cos(t)-t\\sin(t))-j\\;(6t^2e^{2t}+6te^{2t}+\\sin(t)+t\\cos(t))}"
"\\mathbf{+k\\;(6t\\cos(t)-3t^2\\sin(t)-e^t\\sin(t)-e^t\\cos(t))}"
"\\mathbf{At\\;t=0,\\; \\dfrac{d}{dt}(u \\times v)=i\\;(3+1-0)-j\\;(0+0+0+0)+k\\;(0-0-0-1)}"
"\\mathbf{=4\\;i-0\\;j+(-1)\\;k=4\\;i-k}" ......................Ans.
Comments
Leave a comment