"A^o" = union of open subsets of A. Hence "A^o= \\{1,2\\}\\cup\\{1\\}\\cup \\{ \\emptyset \\}=\\{1,2\\}." ext(A)= union of open sets disjoint from A="\\emptyset" since every nonempty set contains 1. b(A)= "\\overline{A}\\setminus A^o= \\mathbb{N}\\setminus \\{1,2\\}". since ext(A) is empty, closure of A is the entire space.
"B^o=" "\\emptyset" since all non-empty open sets contain 1. ext(B)="=\\emptyset\\cup \\{1\\}\\cup\\{1,2\\}\\cup\\{1,2,3\\}\\cup\\{1,2,3,4\\}" "=\\{1,2,3,4\\}." b(B)= "\\overline{B}\\setminus B^o= \\overline{B}." Since "\\{1,2,3,4\\}"
is the largest open set disjoint from B. Hence "\\overline {B}=\\mathbb{N} \\setminus\\{1,2,3,4\\}."
Comments
Leave a comment