Calculate the ground state energy for delta function potential by making use of variational principle.
"V=\\alpha\/x\/"
gaussian trial function
"\\psi=exp(-\\beta x^2)"
Since this wave function is not normalized , first we will normalize this wave function.
"\\int ^\\infty_{-\\infty}\\psi*\\psi dx=2A^2 \\int^\\infty_0 exp(-\\beta x^2)dx=1"
"2A^2 \\frac{1}{2}(\\frac{\\pi}{2\\beta})^\\frac{1}{2}=1=A^2=\\sqrt{\\frac{2\\beta}{\\pi}}"
"<V>=2\\alpha A^2\\int^\\infty_0 xe^{-2\\beta x^2}dx==2\\alpha A^2(-\\frac{1}{4\\beta}exp(-2\\beta x^2))\/_0^\\infty=\\frac{\\alpha A^2}{2\\beta}"
"=\\frac{\\alpha}{2\\beta} \\sqrt{\\frac{2\\beta}{\\pi}}=\\frac{\\alpha}{\\sqrt{2\\beta \\pi}}"
"<H>=<T>+<V>= \\frac{h^2\\beta}{2m}+\\frac{\\alpha}{\\sqrt{2\\beta\\pi}}"
To determine "\\beta"
"\\frac{\\delta <H>}{\\delta \\beta}=\\frac{h^2}{2m}-\\frac{1}{2}\\frac{\\alpha}{\\sqrt{2\\pi }} \\beta ^{-3\/2}=0"
"\\beta^{3\/2}=\\frac{\\alpha}{\\sqrt{2\\pi}} \\frac{m}{h^2}=\\beta=(\\frac{m\\alpha}{\\sqrt{2\\pi h^2}})^{2\/3}"
"E_{min}=<H>_{min}=\\frac{h^2}{2m} (\\frac{m\\alpha}{\\sqrt{2\\pi h^2}})^{2\/3} +\\frac{\\alpha}{\\sqrt{2\\pi}}(\\frac{\\sqrt{2\\pi h^2}}{m\\alpha}) ^{1\/3}"
Comments
Leave a comment