Use taylors series method to find approximate Value of y at x =0.2,given that dy/dx =2y+3ex,y(0)=0 comapre the result by solving the differential equation
We are given; "\\displaystyle\ny\\prime=2y+3e^x,\\ y(0)=0,\\ h=0.1" (since step length is not given, I assume a step length of "0.1"), "\\displaystyle\nx_0=0,\\text{and } y_0=0".
Using Taylor's series method, we are to find "y(0.2)."
Now, differentiating the given DE successively yields;
"\\displaystyle\ny\\prime=2y+3e^x\\\\\ny\\prime\\prime=2y\\prime+3e^x\\\\\ny\\prime\\prime\\prime=2y\\prime\\prime+3e^x\\\\"
Now, substituting yields;
"\\displaystyle\ny_0\\prime=2y_0+3e^{x_0}=3\\\\\ny_0\\prime\\prime=2y_0\\prime+3e^{x_0}=9\\\\\ny_0\\prime\\prime\\prime=2y_0\\prime\\prime+3e^{x_0}=21\\\\"
Putting these values into the Taylor's series yields;
"\\displaystyle\ny(0.1)=y_1=y_0+hy_0\\prime+\\frac{h^2}{2!}y_0\\prime\\prime+\\frac{h^3}{3!}y_0\\prime\\prime\\prime+\\cdots"
"\\displaystyle\n=0+0.1(3)+\\frac{0.1^2}{2}\\times9+\\frac{0.1^3}{6}\\times21+\\cdots=0.3485"
Next, "x_1=0.1", and "y_1=0.3485". Thus substituting yields;
"\\displaystyle\ny_1\\prime=2y_1+3e^{x_1}=4.012512754\\\\\ny_1\\prime\\prime=2y_1\\prime+3e^{x_1}=11.34053826\\\\\ny_1\\prime\\prime\\prime=2y_1\\prime\\prime+3e^{x_1}=25.99658928\\\\"
Putting these values into the Taylor's series yields;
"\\displaystyle\ny(0.2)=y_2=y_1+hy_1\\prime+\\frac{h^2}{2!}y_1\\prime\\prime+\\frac{h^3}{3!}y_1\\prime\\prime\\prime+\\cdots"
"\\displaystyle\n=0.3485+0.1(4.012512754)+\\frac{0.1^2}{2}\\times11.34053826"
"\\displaystyle\n+\\frac{0.1^3}{6}\\times25.99658928+\\cdots=0.8107867316"
Thus, the approximate value of "y(0.2)" using Taylor's series is;
"y(0.2)=0.8107867316"
Solving directly yields;
"\\displaystyle\ny\\prime=2y+3e^x\\Rightarrow y\\prime-2y=3e^x"
Integrating Factor is;
"\\displaystyle\ne^{\\int(-2)\\ dx}=e^{-2x}"
"\\displaystyle""\\displaystyle\n(y\\prime-2y)e^{-2x}=3e^x\\times e^{-2x}\\\\\n\\Rightarrow \\frac{d}{dx}(ye^{-2x})=3e^{-x}\\\\\n\\Rightarrow ye^{-2x}=\\int3e^{-x}\\ dx=3\\int e^{-x}\\ dx=-3e^{-x}+c", where c is an arbitrary constant
"\\displaystyle\n\\Rightarrow y=ce^{2x}-3e^{x}"
Since "\\displaystyle\ny(0)=0, \\text{ then }c=3\\Rightarrow y=3e^{2x}-3e^{x}\\\\"
Now,
"\\displaystyle\ny(0.2)=3e^{2\\times0.2}-3e^{0.2}=3e^{0.4}-3e^{0.2}=0.8112658184"
Comments
Leave a comment