Proof whether the following operations are inner product operations:
⟨x, y⟩ = 2x1y1 − x1y2 − x2y1 + 2x2y2, x=(x1, x2), y=(y1, y2)
We must verify linearity,symmetry and positive definiteness properties.
We can define <x,y> through matrix operations as
"<x,y>=x^T\\cdot A\\cdot y, \\space x=\\begin{pmatrix}\n\n x_1 \\\\\n\n x_2\\end{pmatrix},x^T=(x_1\\space x_2),y=\\begin{pmatrix}\n\n y_1 \\\\\n\n y_2\\end{pmatrix},\n\nA=\\begin{pmatrix}\n\n 2 & -1 \\\\\n\n -1 & 2\n\n\\end{pmatrix}"
and use linearity of transposition operation "^T" and matrix multiplication
So we have
"<x^{(1)}+x^{(2)},y>=(x^{(1)}+x^{(2)})^T\\cdot A\\cdot y=\\\\\n( (x^{(1)})^T+(x^{(2)}))\\cdot A\\cdot y=((x^{(1)})^T\\cdot A+(x^{(2)})^T\\cdot A\\cdot y=\\\\\n(x^{(1)})^T\\cdot A\\cdot y+(x^{(2)})^T\\cdot A\\cdot y=<x^{(1)},y>+<x^{(2)},y>"
and
"<c\\cdot x,y>=(c\\cdot x)^T\\cdot A \\cdot y=(c\\cdot x^T)\\cdot A\\cdot y=\\\\\nc\\cdot (x^T\\cdot A\\cdot y)=c\\cdot <x,y>"
Thus linearity by the first argument of <,> is proved.
2) Symmetry property
"<x,y>=x^T\\cdot A \\cdot y=[x^T\\cdot A \\cdot y\\in R]=(x^T\\cdot A \\cdot y)^T=\\\\\ny^T\\cdot A^T\\cdot (x^T)^T=[A^T=A,\\space A-symmetric,(x^T)^T=x]=y^T\\cdot A\\cdot x=<y,x>"
From symmetry of <x,y> linearity by 2-argument is proved also.
3) Positive definiteness property.
This property better to verify by using simplest definition of <x,y>.
Let "x\\ne\\overline 0" or "x_1^2+x_2^2> 0" . We have
<x,x>="2x_1^2-2x_1x_2+2x_2^2=(x_1-x_2)^2+x_1^2+x_2^2>0"
Thus all properties of inner product is proved.
Comments
Leave a comment