Question 1
Stonewall receives ¢250 per year in simple interest from an amount of money he invested in ADB, Barclays and GCB. Suppose ADB pays an interest of 2%, Barclays pays an interest of 4% and GCB pays an interest of 5% per annum and an amount of ¢350 more was invested in Barclays than the amount invested in ADB and GCB combined. Also, the amount invested in Barclays is 2 times the amount invested in GCB.
a) Write down the three linear equations and represent them in the matrix form ?? = ?.
b) Find the amount of money Stonewall invested in ADB, Barclays and GCB using Matrix inversion.
Lets x - invested in ADB,
y - invested inBarclays ,
z - invested in GCB.
"0.02x+0.04y+0.05z=250"
"y=350+(x+z)"
"y=2z"
We have a system
"0.02x+0.04y+0.05z=250\\\\\n-x+y-z=350\\\\\ny-2z=0"
"A=\\begin{pmatrix}\n 0.02 & 0.04&0.05 \\\\\n -1& 1&-1\\\\\n0&1&-2\n\\end{pmatrix}, X=\\begin{pmatrix}\n x \\\\\n y\\\\\nz\n\\end{pmatrix}, \\\\B=\\begin{pmatrix}\n 250\\\\\n 350\\\\\n0\n\\end{pmatrix}"
"AX=B\\\\\nX=A^{-1}\\cdot B\\\\\nA^{-1}:"
"\\begin{pmatrix}\n 0.02 & 0.04&0.05&|1&0&0 \\\\\n -1& 1&-1&|0&1&0\\\\\n0&1&-2&|0&0&1\n\\end{pmatrix}\\leftrightarrow"
Ir"\\leftrightarrow"IIr
"\\begin{pmatrix}\n -1&1&-1&|0&1&0 \\\\\n 0.02&0.04&0.05&|1&0&0\\\\\n0&1&-2&|0&0&1\n\\end{pmatrix}\\leftrightarrow"
IIr+Ir(0.02)
Ir(-1)
"\\begin{pmatrix}\n 1&-1&1&|0&-1&0 \\\\\n 0&0.06&0.03&|1&0.02&0\\\\\n0&1&-2&|0&0&1\n\\end{pmatrix}\\leftrightarrow"
IIr"\\leftrightarrow" IIIr
"\\begin{pmatrix}\n 1&-1&1&|0&-1&0 \\\\\n 0&1&-2&|0&0&1\\\\\n0&0.06&0.03&|1&0.02&0\\\\\n\\end{pmatrix}\\leftrightarrow"
IIIr+IIr(-0.06)
"\\begin{pmatrix}\n 1&-1&1&|0&-1&0 \\\\\n 0&1&-2&|0&0&1\\\\\n0&0&0.15&|1&0.02&-0.06\\\\\n\\end{pmatrix}\\leftrightarrow"
IIIr("\\frac{20}{3}")
"\\begin{pmatrix}\n 1&-1&1&|0&-1&0 \\\\\n 0&1&-2&|0&0&1\\\\\n0&0&1&|\\frac{20}{3}&\\frac{2}{15}&-\\frac{2}{5}\\\\\n\\end{pmatrix}\\leftrightarrow"
IIr+IIIr(2)
Ir+IIIr(-1)
"\\begin{pmatrix}\n 1&-1&0&|-\\frac{20}{3}&-\\frac{17}{15}&\\frac{2}{5} \\\\\n 0&1&0&|\\frac{40}{3}&\\frac{4}{15}&\\frac{1}{5}\\\\\n0&0&1&|\\frac{20}{3}&\\frac{2}{15}&-\\frac{2}{5}\\\\\n\\end{pmatrix}\\leftrightarrow"
Ir+IIr
"\\begin{pmatrix}\n 1&0&0&|\\frac{20}{3}&-\\frac{13}{15}&\\frac{3}{5} \\\\\n 0&1&0&|\\frac{40}{3}&\\frac{4}{15}&\\frac{1}{5}\\\\\n0&0&1&|\\frac{20}{3}&\\frac{2}{15}&-\\frac{2}{5}\\\\\n\\end{pmatrix}"
"A^{-1}=\\begin{pmatrix}\n \\frac{20}{3}&-\\frac{13}{15}&\\frac{3}{5} \\\\\n \\frac{40}{3}&\\frac{4}{15}&\\frac{1}{5}\\\\\n\\frac{20}{3}&\\frac{2}{15}&-\\frac{2}{5}\\\\\n\\end{pmatrix}"
"X=\\begin{pmatrix}\n \\frac{20}{3}&-\\frac{13}{15}&\\frac{3}{5} \\\\\n \\frac{40}{3}&\\frac{4}{15}&\\frac{1}{5}\\\\\n\\frac{20}{3}&\\frac{2}{15}&-\\frac{2}{5}\\\\\n\\end{pmatrix}\\cdot\\begin{pmatrix}\n 250\\\\\n 350\\\\\n0\n\\end{pmatrix}=\\\\\n=\\begin{pmatrix}\n \\frac{4090}{3}\\\\\n \\frac{10280}{3}\\\\\n\\frac{5140}{3}\n\\end{pmatrix}"
x=1363"\\frac{1}{3}"
y=3426"\\frac{2}{3}"
z=1713"\\frac{1}{3}"
Comments
Leave a comment