Let S = {α, β, γ}, T = {α, α + β, α + β + γ}, W = {α + β, β + γ, α + γ} be subsets in (4)
a vector space V. Prove that L(S ) = L(T) = L(W).
"s=(\\alpha,\\beta,\\gamma)"
let "t \\in L(T)" where t is a linear combination of element of T.
i.e. t="a(\\alpha)+b(\\alpha+\\beta)+c(\\alpha+\\beta+\\gamma)"
so "t\\in" L(S)
L(T)"\\subset" L(S).................................(1)
Now, w"\\in" L(W) such that "w=a_1(\\alpha+\\beta)+b_1(\\beta+\\gamma)+c_1(\\alpha+\\gamma)"
w=(a1+c1)"\\alpha"+
(a1+b1) "\\beta" +(b1+c1)"\\gamma"
w is a linear combination of "\\alpha,\\beta,\\gamma"
so w"\\in" L(S)................................(2)
now let s"\\in" L(S), where "s=a_2+b_2\\beta +c_3\\gamma"
"s=a_1\\alpha+b_2\\beta+c_3\\gamma"
we can write s in form of
"s=a_3\\alpha +a_4(\\alpha+\\beta)+a_5(\\gamma+\\alpha)"
and
"s=a_6\n(\\alpha+\\beta)+a_7(\\beta+\\gamma)+a_8(\\gamma+\\alpha)"
so, s"\\in" L(T); s"\\in" L(W)
"\\therefore L(S)\\subset L(T);\nL(S)\\subset L(W)"
"\\therefore L(S)=L(T)=L(W)"
hence proved...
Comments
Leave a comment