Diagonalize the matrix
10 −2 −5
−2 2 3
−5 3 5
Find the eigen values
"\\det(A-\\lambda I)=\\begin{vmatrix}\n 10-\\lambda & -2 & -5 \\\\\n -2 & 2-\\lambda & 3 \\\\\n -5 & 3 & 5-\\lambda \\\\\n\\end{vmatrix}"
"=(10-\\lambda\\begin{vmatrix}\n 2-\\lambda & 3 \\\\\n 3 & 5-\\lambda\n\\end{vmatrix}+2\\begin{vmatrix}\n -2 & 3 \\\\\n -5 & 5-\\lambda\n\\end{vmatrix}"
"-5\\begin{vmatrix}\n -2 & 2-\\lambda \\\\\n -5 & 3\n\\end{vmatrix}=(10-\\lambda)(10-7\\lambda+\\lambda^2-9)"
"+2(-10+2\\lambda+15)-5(-6+10-5\\lambda)"
"=10-70\\lambda+10\\lambda^2-\\lambda+7\\lambda^2-\\lambda^3+10+4\\lambda"
"-20+25\\lambda=-\\lambda^3+17\\lambda^2-42\\lambda"
"=-\\lambda(\\lambda-3)(\\lambda-14)"
"\\det(A-\\lambda I)=0=>-\\lambda(\\lambda-3)(\\lambda-14)=0"
The roots are "\\lambda_1=14, \\lambda_2=3, \\lambda_3=0."
These are eigenvalues.
Find the eigenvectors
"\\lambda\n=14"
"=\\begin{pmatrix}\n -4 & -2 & -5 \\\\\n -2 & -12 & 3 \\\\\n -5 & 3 & -9 \\\\\n\\end{pmatrix}"
"R_2=R_2-R_1\/2"
"R_3=R_3-5R_1\/4"
"R_3=R_3+R_2\/2"
"R_2=R_2\/(-11)"
"R_1=R_1+2R_2"
"R_1=R_1\/(-4)"
If we take "v_3=t," then "v_1=-\\dfrac{3}{2}t, v_2=\\dfrac{1}{2}t."
The eigenvector is "v=\\begin{pmatrix}\n - 3\/2 \\\\\n 1\/2 \\\\\n1\n\\end{pmatrix}"
"\\lambda\n=3"
"A-\\lambda I=\\begin{pmatrix}\n 10-3 & -2 & -5 \\\\\n -2 & 2-3 & 3 \\\\\n -5 & 3 & 5-3 \\\\\n\\end{pmatrix}""=\\begin{pmatrix}\n 7 & -2 & -5 \\\\\n -2 & -1 & 3 \\\\\n -5 & 3 & 2 \\\\\n\\end{pmatrix}"
"R_2=R_2+2R_1\/7"
"\\begin{pmatrix}\n 7 & -2 & -5 \\\\\n 0 & -11\/7 & 11\/7 \\\\\n -5 & 3 & 2 \\\\\n\\end{pmatrix}""R_3=R_3+5R_1\/7"
"\\begin{pmatrix}\n 7 & -2 & -5 \\\\\n 0 & -11\/7 & 11\/7 \\\\\n 0 & 11\/7 & -11\/7 \\\\\n\\end{pmatrix}""R_3=R_3+R_2"
"\\begin{pmatrix}\n 7 & -2 & -5 \\\\\n 0 & -11\/7 & 11\/7 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}""R_2=-7R_2\/11"
"\\begin{pmatrix}\n 7 & -2 & -5 \\\\\n 0 & 1 &-1 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}""R_1=R_1+2R_2"
"\\begin{pmatrix}\n 7 & 0 & -7 \\\\\n 0 & 1 &-1 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}""R_1=R_1\/7"
"\\begin{pmatrix}\n 1 & 0 & -1 \\\\\n 0 & 1 &-1 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}"If we take "u_3=t," then "u_1=t, u_2=t."
The eigenvector is "u=\\begin{pmatrix}\n 1 \\\\\n 1 \\\\\n1\n\\end{pmatrix}"
"\\lambda\n=0"
"A-\\lambda I=\\begin{pmatrix}\n 10-0 & -2 & -5 \\\\\n -2 & 2-0 & 3 \\\\\n -5 & 3 & 5-0 \\\\\n\\end{pmatrix}""=\\begin{pmatrix}\n 10 & -2 & -5 \\\\\n -2 & 2 & 3 \\\\\n -5 & 3 & 5 \\\\\n\\end{pmatrix}"
"R_2=R_2+R_1\/5"
"\\begin{pmatrix}\n 10 & -2 & -5 \\\\\n 0 & 8\/5 &2 \\\\\n -5 & 3 & 5 \\\\\n\\end{pmatrix}""R_3=R_3+R_1\/2"
"\\begin{pmatrix}\n 10 & -2 & -5 \\\\\n 0 & 8\/5 &2 \\\\\n 0 & 2 & 5\/2 \\\\\n\\end{pmatrix}""R_3=R_3-5R_2\/4"
"\\begin{pmatrix}\n 10 & -2 & -5 \\\\\n 0 & 8\/5 &2 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}""R_2=5R_2\/8"
"\\begin{pmatrix}\n 10 & -2 & -5 \\\\\n 0 & 1 & 5\/4 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}""R_1=R_1+2R_2"
"\\begin{pmatrix}\n 10 & 0 & -5\/2 \\\\\n 0 & 1 & 5\/4 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}""R_1=R_1\/10"
"\\begin{pmatrix}\n 1 & 0 & -1\/4 \\\\\n 0 & 1 & 5\/4 \\\\\n 0 & 0 & 0 \\\\\n\\end{pmatrix}"If we take "w_3=t," then "w_1=\\dfrac{1}{4}t, w_2=-\\dfrac{5}{4}t."
The eigenvector is "u=\\begin{pmatrix}\n 1\/4\\\\\n -5\/4\\\\\n1\n\\end{pmatrix}"
Form the matrix "P"
Form the diagonal matrix "D"
The matrices "P" and "D" are such that the initial matrix
"P=\\begin{pmatrix}\n -3\/2 & 1 & 1\/4 \\\\\n 1\/2 & 1 & -5\/4 \\\\\n 1 & 1 & 1\n\\end{pmatrix}"
"D=\\begin{pmatrix}\n 14 & 0 & 0 \\\\\n 0 & 3 & 0 \\\\\n 0 & 0 & 0\n\\end{pmatrix}"
Comments
Leave a comment