(i) T1 : R3 -> R2 by T1 (u, v, w) = ( u - v + 2w, 5v - w).
(ii) T2 : P (R) -> R by T2 (P) = (integral sign from b to a) 2p(x)dx for a,b E R with a<= b
(iii) T3 : P(R) -> P(R) by T3 (P(U) = UP (U) + U
4.. Suppose T : R2 -> M22 is a linear defined by T (u,v) = [u v]
[u 2u]
then Ker (T) is...
5.. Suppose T: R6 -> R4 is a linear map such that null T = U where U is a 2-dimentional subspace of R6 . Then dim range T is...
6.. For a given 2x2 matrix A = [ 5 -3 ]
[ -6 2]
the matrix P that is diagonalizes A can be written as P = ...
Answer:-
1.
The dimension of a nonzero subspace S, is the number of vectors in any basis for S.
Consider the vectors:
"v_1=(1,1,0,0,0),v_2=(0,0,3,1,1)"
vectors v1 and v2 are in S, and are linearly independent. So, the dimension of S is 2.
2.
"T(x,y,z)=x(1,1,1)+y(1,-1,0)+z(0,0,2)"
basis: "(1,1,1),(1,-1,0),(0,0,2)"
3.
i)
let "a(u_1,v_1,w_1),b(u_2,v_2,w_2)" , then:
"T_1(a+b)=(u_1+u_2-(v_1+v_2)+2(w_1+w_2),5(v_1+v_2)-(w_1+w_2))="
"=(u_1-v_1+2w_1,5v_1-w_1)+(u_2-v_2+2w_2,5v_2-w_2)=T_1(a)+T_1(b)"
"T_1(ca)=T_1(cu_1,cv_1,cw_1)=(cu_1-cv_1+2cw_1,5cv_1-cw_1)="
"=c(u_1-v_1+2w_1,5v_1-w_1)=cT_1(a)"
So, T1 is linear transformation.
ii)
"\\displaystyle{\\int^{b_1+b_2}_{a_1+a_2}}2p(x)dx\\neq \\displaystyle{\\int^{b_1}_{a_1}}2p(x)dx+\\displaystyle{\\int^{b_2}_{a_2}}2p(x)dx"
T2 is not linear transformation.
iii)
"(u_1+u_2)p(u_1+u_2)+(u_1+u_2)\\neq u_1p(u_1)+u_1+u_2p(u_2)+u_2"
T2 is not linear transformation.
4.
u+v=0
u+2u=0
Ker(T)=(0,0)
5.
by the rank-nullity theorem:
"6=dim(Ker(T))+dim(Im(T))"
So, dim range T= 6-dim(Ker(T))=6-2=4
6.
"\\begin{vmatrix}\n 5-\\lambda & -3 \\\\\n -6 & 2-\\lambda\n\\end{vmatrix}=0"
"10-7\\lambda+\\lambda^2-18=0"
"\\lambda_1=\\frac{7-\\sqrt{49+32}}{2}=-1"
"\\lambda_2=8"
for "\\lambda_1":
"6x-3y=0"
"y=2x"
"x_1=\\begin{pmatrix}\n 1 \\\\\n 2 \n\\end{pmatrix}"
for "\\lambda_2":
"-3x-3y=0"
"x=-y"
"x_2=\\begin{pmatrix}\n 1 \\\\\n -1 \n\\end{pmatrix}"
"P=\\begin{pmatrix}\n 1& 1 \\\\\n 2& -1\n\\end{pmatrix}"
Comments
Leave a comment