Given f(0) = – 18, f(1) = 0, f(3) = 0, f(5) = – 248, f(6) = 0, f(9) = 13104; find f(x).
The interpolating polynomial is:
"L(x)=\\dfrac{(x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)(x_0-x_4)(x_0-x_5)}\\times y_0""+\\dfrac{(x-x_0)(x-x_2)(x-x_3)(x-x_4)(x-x_5)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)(x_1-x_4)(x_1-x_5)}\\times y_1"
"+\\dfrac{(x-x_0)(x-x_1)(x-x_3)(x-x_4)(x-x_5)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)(x_2-x_4)(x_2-x_5)}\\times y_2"
"+\\dfrac{(x-x_0)(x-x_1)(x-x_2)(x-x_3)(x-x_5)}{(x_4-x_0)(x_4-x_1)(x_4-x_2)(x_4-x_3)(x_4-x_5)}\\times y_4"
"+\\dfrac{(x-x_0)(x-x_1)(x-x_2)(x-x_3)(x-x_4)}{(x_5-x_0)(x_5-x_1)(x_5-x_2)(x_5-x_3)(x_5-x_4)}\\times y_5"
"+0"
"+0"
"+\\dfrac{(x-0)(x-1)(x-3)(x-6)(x-9)}{(5-0)(5-1)(5-3)(5-6)(5-9)}\\times (-248)"
"+0"
"+\\dfrac{(x-0)(x-1)(x-3)(x-5)(x-6)}{(9-0)(9-1)(9-3)(9-5)(9-6)}\\times 13104"
"L(x)=(x^2+x+1)(x-1)(x-3)(x-6)"
Comments
Leave a comment