Perform three iteration of the bisection method compute the positive root of
the equation f(x) = x² – 5x + 2
Initial values "a_0=0, b_0=1"
"f(b_0)=f(1)=(1)^2-5(1)+2=-2"
"f(a_0)f(b_0)=2(-2)=-4<0"
"x_n=\\dfrac{a_n+b_n}{2}"
"f(x_n)\\leq\\varepsilon=>answer=x_n"
"a_{n+1}=x_n, b_{n+1}=b_n, f(a_n)f(x_n)\\geq 0"
"a_{n+1}=a_n, b_{n+1}=x_n, f(b_n)f(x_n)\\geq 0"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n n & x & f(x) \\\\ \\hline\n 1 & 0.5 & -0.25 \\\\\n 2 & 0.25 & 0.8125 \\\\\n 3 & 0.375 & 0.265625 \\\\\n \\hdashline\n \n\\end{array}"
Initial values "a_0=4, b_0=5"
"f(b_0)=f(5)=(5)^2-5(5)+2=2"
"f(a_0)f(b_0)=-2(2)=-4<0"
"x_n=\\dfrac{a_n+b_n}{2}"
"f(x_n)\\leq\\varepsilon=>answer=x_n"
"a_{n+1}=x_n, b_{n+1}=b_n, f(a_n)f(x_n)\\geq 0"
"a_{n+1}=a_n, b_{n+1}=x_n, f(b_n)f(x_n)\\geq 0"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n n & x & f(x) \\\\ \\hline\n 1 & 4.5 & -0.25 \\\\\n 2 & 4.75 & 0.8125 \\\\\n 3 & 4.625 & 0.265625 \\\\\n \\hdashline\n \n\\end{array}"
Comments
Leave a comment