Consider the following tridiagonal system of linear equations:
[3 2 0 0 [x1 [12
2 3 2 0 x2 = 17
0 2 3 2 x3 14
0 0 2 3] x4 ] 7]
Solve this system using Thomas algorithm
Let 𝑥(0)T=[0 0 0 0] and solve the system using Jacobi, and Gauss-Seidel for at least five iterations
Using Thomas algorithm:
"a_1=2\/3,b_1=12\/3=4"
"a_2=2\/(3-2\\cdot2\/3)=6\/5,b_2=(17-2\\cdot4)\/(3-2\\cdot2\/3)=27\/5"
"a_3=2\/(3-2\\cdot6\/5)=10\/3,b_3=(14-2\\cdot27\/5)\/(3-2\\cdot6\/5)=16\/3"
"b_4=(7-2\\cdot16\/3)\/(3-2\\cdot10\/3)=1"
"x_4=b_4=1"
"x_3=b_3-a_3x_4=16\/3-10\/3=2"
"x_2=b_2-a_2x_3=27\/5-6\\cdot2\/5=3"
"x_1=b_1-a_1x_2=4-2\\cdot3\/3=2"
Using Jacobi method:
"x_1^{(1)}=12\/3=4,x_2^{(1)}=17\/3,x_3^{(1)}=14\/3,x_4^{(1)}=7\/3"
"x_1^{(2)}=1\/3(12-2\\cdot17\/3)=2\/9"
"x_2^{(2)}=1\/3(17-2\\cdot4-2\\cdot14\/3)=-1\/9"
"x_3^{(2)}=1\/3(14-2\\cdot17\/3-2\\cdot7\/3)=-2\/3"
"x_4^{(2)}=1\/3(7-2\\cdot14\/3)=-7\/9"
"x_1^{(3)}=1\/3(12+2\/9)=110\/27"
"x_2^{(3)}=1\/3(17-2\\cdot2\/9+2\\cdot2\/3)=161\/27"
"x_3^{(3)}=1\/3(14+2\/9+2\\cdot7\/9)=142\/27"
"x_4^{(3)}=1\/3(7+2\\cdot2\/3)=25\/9"
"x_1^{(4)}=1\/3(12-2\\cdot161\/27)=2\/81"
"x_2^{(4)}=1\/3(17-2\\cdot110\/27-2\\cdot142\/27)=-45\/81=-5\/9"
"x_3^{(4)}=1\/3(14-2\\cdot161\/27-2\\cdot25\/9)=-94\/81"
"x_4^{(4)}=1\/3(7-2\\cdot142\/27)=-95\/81"
"x_1^{(5)}=1\/3(12+2\\cdot5\/9)=118\/27=4.37"
"x_2^{(5)}=1\/3(17-2\\cdot2\/81+2\\cdot94\/81)=1561\/243=6.42"
"x_3^{(5)}=1\/3(14+2\\cdot5\/9+2\\cdot95\/81)=1414\/243=5.82"
"x_4^{(5)}=1\/3(7+2\\cdot94\/81)=755\/243=3.11"
Using Gauss-Seidel method:
"x_1^{(1)}=12\/3=4"
"x_2^{(1)}=1\/3(17-2\\cdot4)=3"
"x_3^{(1)}=1\/3(14-2\\cdot3)=8\/3"
"x_4^{(1)}=1\/3(7-2\\cdot8\/3)=5\/9"
"x_1^{(2)}=1\/3(12-2\\cdot3)=2"
"x_2^{(2)}=1\/3(17-2\\cdot2-2\\cdot8\/3)=23\/9"
"x_3^{(2)}=1\/3(14-2\\cdot23\/9-2\\cdot5\/9)=90\/27=10\/3"
"x_4^{(2)}=1\/3(7-2\\cdot10\/3)=1\/9"
"x_1^{(3)}=1\/3(12-2\\cdot23\/9)=62\/27"
"x_2^{(3)}=1\/3(17-2\\cdot62\/27-2\\cdot10\/3)=155\/81"
"x_3^{(3)}=1\/3(14-2\\cdot155\/27-2\\cdot1\/9)=90\/27=62\/81"
"x_4^{(3)}=1\/3(7-2\\cdot62\/81)=443\/243"
"x_1^{(4)}=1\/3(12-2\\cdot155\/81)=662\/243"
"x_2^{(4)}=1\/3(17-2\\cdot662\/243-2\\cdot62\/81)=2435\/729"
"x_3^{(4)}=1\/3(14-2\\cdot2435\/729-2\\cdot443\/243)=90\/27=1.22"
"x_4^{(4)}=1\/3(7-2\\cdot1.22)=1.52"
"x_1^{(5)}=1\/3(12-2\\cdot2435\/729)=1.77"
"x_2^{(5)}=1\/3(17-2\\cdot1.77-2\\cdot1.22)=3.67"
"x_3^{(5)}=1\/3(14-2\\cdot3.67-2\\cdot1.52)=90\/27=1.21"
"x_4^{(5)}=1\/3(7-2\\cdot1.21)=1.53"
Comments
Leave a comment