"k=\\frac{|[\\overline{r}^\\prime,\\overline{r}^{\\prime\\prime}]|}{|\\overline{r}^\\prime|^3}\\\\\ni.\\ x=u, y=e^u, z=0\\\\\n\\overline{r}(u)=(u,e^u,0)\\\\\n\\overline{r}^\\prime(u)=(1,e^u,0)\\\\\n\\overline{r}^{\\prime\\prime}(u)=(0,e^u,0)\\\\\n[\\overline{r}^\\prime,\\overline{r}^{\\prime\\prime}]=(0,0,e^u)\\text{ (vector product of } \\overline{r}^\\prime\\text{ and }\\overline{r}^{\\prime\\prime}).\\\\\n|[\\overline{r}^\\prime,\\overline{r}^{\\prime\\prime}]|=e^u\\\\\n|\\overline{r}^\\prime(u)|=\\sqrt{1+e^{2u}}\\\\\nk=\\frac{e^u}{(\\sqrt{1+e^{2u}})^3}\\\\\nii.\\ \\ x=u, y=2+\\sin u, z=0\\\\\n\\overline{r}(u)=(u,2+\\sin u,0)\\\\\n\\overline{r}^\\prime(u)=(1,\\cos u,0)\\\\\n\\overline{r}^{\\prime\\prime}(u)=(0,-\\sin u,0)\\\\\n[\\overline{r}^\\prime,\\overline{r}^{\\prime\\prime}]=(0,0,-\\sin u)\\text{ (vector product of } \\overline{r}^\\prime\\text{ and }\\overline{r}^{\\prime\\prime}).\\\\\n|[\\overline{r}^\\prime,\\overline{r}^{\\prime\\prime}]|=|\\sin u|\\\\\n|\\overline{r}^\\prime(u)|=\\sqrt{1+\\cos^2u}\\\\\nk=\\frac{|\\sin u|}{(\\sqrt{1+\\cos^2u})^3}\\\\"
Comments
Leave a comment