T :β2 β β2 as, π π₯, π¦ = (1, π¦) ;is it a linear transformation?
Here given
T :β2 β β2 , is defined as
T(x,y)=(1,y)
Now,
"for \\space T((1,0)+(0,))=T((1,1))=(1,1)"
but "T((1,0))+T((0,1))=(1,0)+(1,1)=(2,1)"
Thus for "(1,0),(0,1)\\in\\Reals^2,\\\\T((1,0)+(0,1)\\ne T((1,0))+T((0,1))"
and T is not a linear transformation.
By definition, a map, "T:V(F)\\to U(F) is linear transformation if T(\\alpha u+\\beta y)=\\alpha T(u)+\\beta T(y) \\forall\\alpha, \\beta,\\in,F \\space and u,y\\in V"
or
equivalently
"T(u+y)=T(u)+T(y)\\forall u,y\\in V\\\\T(\\alpha u)=\\alpha T(u)\\forall \\alpha \\in F,u\\in V"
Comments
Leave a comment