Disprove that the commutative property holds on the matrix multiplication.
For example:
"A=\\begin{pmatrix}\n 3 & 4 \\\\\n 1 & 2\n\\end{pmatrix}"
"B=\\begin{pmatrix}\n 6 & 2 \\\\\n 3 & 2\n\\end{pmatrix}"
"AB=\\begin{pmatrix}\n 18+12 &6+8 \\\\\n 6+6 & 2+4\n\\end{pmatrix}=\\begin{pmatrix}\n 30 &14 \\\\\n 12 & 6\n\\end{pmatrix}"
"BA=\\begin{pmatrix}\n 18+2 &24+4 \\\\\n 9+2 & 12+4\n\\end{pmatrix}=\\begin{pmatrix}\n 20 &28 \\\\\n 11 & 16\n\\end{pmatrix}"
"AB\\neq BA"
Comments
Leave a comment