Determine by Lagrange’s formula, the percentage number of criminals under 35 years:
Age % number of criminals
under 25 years 52
under 30 years 67.3
under 40 years 84.1
under 50 years 94.4
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n x & 25 & 30 & 40 & 50\\\\ \\hline\ny& 52 & 67.3 & 84.1 & 94.4 \\\\\n \\hdashline\n \n\\end{array}", where "x" denotes age and "y" denotes % of criminals.
By Lagrange’s interpolation formula we have:
"f(x)= \\frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0+ \\frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)} y_1+ \\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2+ \\frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)} y_3"
We put "x=35:"
"y(35)=f(35)= \\frac{(35-30)(35-40)(35-50)}{(25-30)(25-40)(25-50)}52+ \\frac{(35-25)(35-40)(35-50)}{(30-25)(30-40)(30-50)} 67.3+ \\frac{(35-25)(35-30)(35-50)}{(40-25)(40-30)(40-50)}84.1+ \\frac{(35-25)(35-30)(35-40)}{(50-25)(50-30)(50-40)} 94.4=-\\tfrac{1}{5}\\cdot 52+\\tfrac{3}{4}\\cdot 67.3+\\tfrac{1}{2}\\cdot 84.1-\\tfrac{1}{20}\\cdot 94.4=77.405"
Answer: the percentage number of criminals under 35 years is 77.405.
Comments
Leave a comment