The second divided difference f[xo, x1, x2]
can be written as
f[xo, x1, x2] = af(x0) + bf(x1) + cf(x2).
Find the expressions for a, b, c.
The first divided difference: "f[x_i,x_{i+1}]=\\frac{f[x_{i+1}]-f[x_i]}{x_{i+1}-x_i}" , where "f[x_i]=f(x_i)" .
The second divided difference: "f[x_0,x_1,x_2]=\\frac{f[x_1,x_2]-f[x_0,x_1]}{x_2-x_0}=\\frac{\\frac{f[x_{2}]-f[x_1]}{x_{2}-x_1}\n-\\frac{f[x_{1}]-f[x_0]}{x_{1}-x_0}\n}{x_2-x_0}=\\\\\n=\\frac{f[x_0]}{(x_1-x_0)(x_2-x_0)\n}+\\frac{f[x_1](x_0-x_2)}{\n(x_1-x_0)(x_2-x_1)(x_2-x_0)\n}+ \\frac{f[x_2]}{(x_2-x_1)(x_2-x_0)\n}=\\\\\n= \\frac{f(x_0)}{(x_0-x_1)(x_0-x_2)\n}+\n\\frac{f(x_1)}{(x_1-x_0)(x_1-x_2)\n}+ \\frac{f(x_2)}{(x_2-x_0)(x_2-x_1)\n}"
Answer: "a=\\frac{1}{(x_0-x_1)(x_0-x_2)},\\quad b=\\frac{1}{(x_1-x_0)(x_1-x_2)},\\quad c=\\frac{1}{(x_2-x_0)(x_2-x_1)}."
Comments
Leave a comment